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Abstract

Two strategies, derived from Schaffer (1986), were compared as tests of significance for a

complete set of planned orthogonal contrasts. The procedures both maintain experimentwise error

rate at or below alpha but differ in the manner in which they test the contrast with the largest

observed difference. One approach proceeds directly to the test of the contrast with the largest

difference at a reduced significance level. The other is a protected procedure, first evaluating the

complete null hypothesis with an omnibus F test, and then proceeding to test the specific hypotheses

at a more liberal significance level given tint the complete null hypothesis has been rejected.

Simulation results indicate that the relative power of the two procedures depends on the configuration

of the treatment effects contained in all contrasts. Specifically, the unprotected test favors

configurations with relatively small amounts of variability due to treatment effects, while the

protected test has more power in cases with a relatively large amount of treatment variability.
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Competing Strategies for Planned Orthogonal Contrasts

How should an experimenter conduct the tests of significance associated with a 2X2 factorial

design, a trend analysis, or any other design in which planned orthogonal contrasts provide the

answers to the questions of interest? Should the experimenter conduct an omnibus F test and then

proceed to the individual contrasts only if the omnibus test rejects the complete null hypothesis; or,

should the omnibus test be bypassed, making the individual constrasts the first tests of significance

conducted? In part the answers to these questions reflect researchers' position on the relative

importance of control over power and Type I error. If experimenters skip the omnibus test and

conduct each of the planned orthogonal contrasts at a particular per-comparison error rate (usually

.05), then they will have more power (and a greater chance of a Type I error) than colleagues who

use either an omnibus test as an additional control over Type I error or uses an experimentwise error

rate to control Type I error. The present paper is not concerned with entering into the power versus

Type I error debate. Rather, an exploration is presented of the relative power of two different

strategies for conducting planned orthogonal contrasts, both of which control experimentwise Type I

error for the complete null hypothesis or partial null hypotheses at a given alpha level. Thus, power

differences are not purchased at the expense of control over Type I error, but rather by the

configuration of the particular decision structures within each strategy.

The most common procedure for controlling the experimentwise Type I error rate is to use

Bonferroni's inequality to generate per-comparison error rates. Dunn (1974) suggested conducting

each of the m planned comparisons at the alpha/m level of significance; the sum of the m contrasts

each conducted at this level guarantees an experimentwise error rate of no more than alpha.

Following this approach, a set of k-1 planned orthogonal contrasts on k group means would involve

conducting each contrast at the alpha/(k-1) level of significance. In addition, if an omnibus F test

were to be conducted prior to the individual tests, the experimentwise Type I error rate would be

even further reduced. This would be true whether conducting planned pairwise comparisons or

planned orthogonal contrasts.

Recently, Shaffer (1986) proposed an alternative procedure for pairwise comparisons that can

be applied to the testing of planned orthogonal contrasts among treatment groups. The procedure is a

modification of work by Holm (1979) on applications of Bonferroni's inequality, and involves

putting the test statistics Ti for all m planned comparisons in order of decreasing magnitude of

absolute effect [1T11>1T21 > ...> ITmI]. In Holm's procedure, the null hypothesis for largest test
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statistic 111 is evaluated against a critical value at the alpha/pi significance level. The null hypothesis

corresponding to the second largest test statistic H2 is then tested if and only if the largest comparison

results in a rejected null hypothesis, and is evaluated at the alpha/(m-1) significance level. Thus, the

general form of Holm's procedure is to reject hypotheses Hi...Hi , where j is the largest integer from

1 to m such that the test statistic T, exceeds the critical value at the alpha/(m -i+1) significance level

for all i from 1 to j. Shaffer's modification of Holm's procedure involves testing each comparison at

the alpha/4* significance level, where 4* is the greatest number of possible true null hypotheses

remaining given the rejection of the null hypotheses for all previous comparisons. In a pairwise

comparison scheme, the logical implications of rejections of certain null hypotheses make the number

of possible true null hypotheses remaining 4* potentially smaller than Holm's (m-i+1), thereby

increasing the power at each stage of testing by using increasingly liberal significance levels.

When applied to a complete set of planned orthogonal contrasts, the procedures of Holm and

Shaffer become identical. Thus, for a set of k-1 planned orthogonal contrasts on k group means, the

first contrast is evaluated at alpha/(k-1), the second at alpha/(k-2), and so on. Shaffer (1986) proved

that this "modified sequentially rejective Bonferroni" (MSRB) procedure controls the experimentwise

error rate below alpha for the complete null hypothesis or any pattern of true partial null hypotheses.

It is also uniformly more powerful than using the simple application of Bonferroni's inequality as

suggested by Dunn (1974). Because the MSRB is more powerful than Dunn's test under any

configuration of treatment effects while maintaining the sane ccraroi over Type I error, Dunn's

approach is not considered in the present investigation.

Another approach to testing planned comparisons, a!so outlined in Shaffer (1986), is related to

her earlier work on pairwise comparisons (Shaffer, 1979). The omnibus F test is used to evaluate

the overall hypothesis that all means come from a common population. If this hypothesis is rejected

the null hypothesis for the comparison whose test statistic has the greatest absolute value is evaluated

at the alpha/4* significance level, where 4* is the number of possible true null hypotheses given that

the complete null hypothesis is false. Applying this strategy to a complete set of planned orthogonal

contrasts, ti* will be one less than the number of contrasts, or k-2, where k is the number of

treatment groups. The value of t2* will also be k-2, since rejection of the null hypothesis for the first

contrast does not reduce the number of possible true null hypotheses remaining from that which was

expected based upon rejection of the overall null hypothesis. The procedure continues testing the

null hypothesis for each contrast with successively smaller test statistics at the alpha/Lk-1j significance
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level if and only if all previous null hypotheses have been rejected. This method will be labeled the

"F modified sequentialiy rejective Bonferroni" (FMSRB) procedure.

The overall decision structures of the MSRB and FMSRB are summarized in Figure 1. It is the

purpose of this paper to evaluate the relative power of the MSRB and FMSRB, and to verify control

of Type I error rates. To accomplish this two series of simulations were undertaken -- the first series

involved k=3 treatment groups while the second series involved k=4 treatment groups.

Insert Figure 1 about here

Simulation

k=3 treatment groups

For three treatment groups there are two orthogonal contrasts. The centers of the ten hivariate

t-distributions manipulate the truth or falsehood of the null hypotheses for those contrasts, as well as

the magnitude of the treatment effect given a false null hypothesis. The origin of this distribution

(0,0) represents the case where both null hypotheses are true. One simulation looked at this case for

an evaluation of the control over Type I error. Another case is where one contrast represents a true

null hypothesis while the second contrast has a false null hypothesis. For this situation three

simulations estimated the Type I error rate for the true null hypothesis and the power to detect the

false null hypothesis, with the magnitude of the treatment effect built into the second contrast varied

to simulate small, medium, and large treatment effects. A final case, in which both null hypotheses

are false, was explored using six simulations, representing all combinations of small, medium, and

large treatment effects for two contrasts. For these simulations a small treatment effect is defined as

a difference whose expected value is one standard error of the difference between means away from

the origin, (0,0), while m.,dium and large treatment effects are defined as two and three standard

errors from (0,0), respectively.

For this series, each replication within each simulation consisted of three groups of ten

independent observations sampled from a normal distribution. Individual observations were

genera,ed by combining 24 randomly drawn numbers from the uniform distribution RANF available

on Fortran IV. After transCormati to a distribution with mean 50, variance 10, the observations

were modified to reflect treatment t cects by the addition of the appropriate constants. Ten-thousand

replications were conducted for each simulation. The Type I error rates and power estimates for the
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MSRB and FMSRB within a simulation were calculated for the same 10,000 replications. Each of

the simulated conditions is based on different observations as a separate randomly chosen seed was

selected for each.

Results and Discussion for k=3

In the simulation with both null hypotheses true, the obtained estimates of experimentwise

Type I error rate are .049 for the MSRB and .046 for the the FMSRB. For the case with one true

and one false null hypothesis, Table 1 presents the power estimates and Type I error rates for the

three simulation. Overall, the power of the MSRB is greater than that of the FMSRB for this

configuration. For small treatment effects the difference is less than 1%, for large effects slightly

less than 2%, while for medium effects the difference is 2.2%. The similarity of the result for the

large and medium treatment effects conditions reflects a less extreme definition of large effects

(approximately 75% chance of rejecting the null hypothesis) than of small effects (approximately

10%). In all configurations with true null hypotheses, control over Type I error was maintained.

Insert Table 1 about here

For the case of two false null hypotheses, the results of the six simulation configurations are

presented in Table 2. Four measures of power are reported: probability of rejecting contrast 1,

probability of rejecting contrast 2, probability of rejecting either of the contrasts, and probability of

rejecting both contrasts. All represent power estimates since, in these simulations, both null

hypotheses are false. The latter two measures correspond closely to any-pair power and all-pair

power as used by Ramsey (1978).

Insert Table 2 about here

In these simulations the power of the FMSRB is slightly greater than for the MSRB on all

contrast configurations except [Large, Small]. When both contrasts contribute systematically to the

Mean Square Between Treatments, the omnibus F test is more likely to reject the complete null

hypothesis, with the FMSRB then proceeding to the test of the two specific hypotheses. At that

point the critical value required of the contrast with the greater t value would be 2.365 (1.025) for the

MSRB, while for the FMSRB the critical value would be 2.052 (1.05). The smaller contrast would be

evaluated against a critical value of 2.052 (t.05) for both procedures. The "Any Contrast" column in
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Table 2 reflects the largest differences in power between the procedures for the largest test statistic,

since the tests of the smaller contrast are identical. These differences range from less than 1% to

greater than 5%, with the magnitude of the difference being greater when all contrasts have moderate

and comparable treatment effects.

k=4 treatment groups

The second series of simulation used four treatment groups each with n=10 randomly

generated scores. As before the scores were generated by summing 24 randomly chosen numbers

from the RANF unhbrm distribution. A complete set of three orthogonal contrasts was defined on

the four groups. Two contrasts were of the form t=ai-5Ci)/4(2MSw/n). The first compared groups

1 and 2 while the second compared groups 3 and 4. The remaining contrast was of the form

t=[(5C11-)72)-(5C3+5C4)]/4(4MSw/n).

/ ; before the treatment effect conditions were achieved by separating the means by zero, one,

two, and three standard errors for the null, small, medium, and large treatment effects, respectively.

The Type I error rate and power for the 20 unique configurations of these four effects were estimated

by simulations. One simulation reflected the completely true null hypothesis. Three. simulations

involved two true partial null hypotheses, while six involved one true paniql null hypothesis. The

remaining ten simulations reflected situations where all three contrasts were of false null hypotheses.

Results and Discussion for k=4

The experimentwise Type I error rate for the simulation with all three null hypotheses true was

.047 for the MSRB and .037 for the FMSRB. For the case with two true and one false null

hypothesis, the observed power and experimentwise Type I error rates are presented in Table 3. In

all three such simulations the MSRB was more likely to detect the difference than was the FMSRB.

The difference exceeds 4-5% in those simulations with moderate and large treatment effects. In all

configurations control over Type I error was maintained.

Insert Table 3 about here

For the case where two null hypotheses were false and one was true, six simulations estimated

the power and experimentwise Type I error rates. These results are presented in Table 4,

demonstrating that the MSRB tends to be more powerful when there is little systematic variance

within the set of means. As more variability is introduced in medium and large treatment effect

conditions the FMSRB becomes slightly more powerful than MSRB. Both procedures provide
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conservative control over experimentwise Type I error rate.

Insert Table 4 about here

Table 5 presents the results of the simulations for the condition where all three contrasts have

false null hypotheses. The first pair of columns presents the any-pair power associated with

detecting one or more of the false null hypotheses. The middle pair of columns presents the

probability of detecting two cr more false null hypotheses, and the last two columns present the

probability of correctly detecting all three false null hypotheses. The FMSRB is generally more

powerful than the MSRB for detecting the first contrast, as long as overall there is sufficient

systematic variation in the group means to reject the omnitus test. The two simulations where the

reverse was true are [Small, Small, Small] and [Large, Small, Small], both of which include several

groups with small treatment effects. When attention is directed to detecting more than one of the

treatment effects, the MSRB and FMSRB have trivial differences.

Insert Table 5 about here

Conclusions

The Monte Carlo results for both three and four treatment groups support the following general

conclusions. First, both procedures provide adequate control over experimentwise Type I error

whether there is a complete or partial true null hypothesis. In no instance did an estimate of Type I

error for any configuration of treatment effects exceed the alpha level chosen as the maximum

experimentwise error rate. In most instances the control over Type I error was quite conservative.

Second, when little overall systematic treatment variance is present, the FMSRB has less power than

the MSRB. But, as more systematic treatment variance is introduced either by more or larger effects,

the power of the FMSRB exceeds that of MSRB. And third, the difference between the procedures

is most clearly seen on the first contrast evaluated. It is on this contrast that there is a difference in

the critical values required for significance; after this, both procedures use the same critical values at

each remaining stage of testing.

While the magnitude of the differences in are small, the researcher can achieve increased power

by selection of the appropriate decision structure. Where only one contrast is of importance the

9



Competing Strategies

9

experimenter would be best served by using the MSRB; however, where two or more contrasts are

likely to contribute systematic variance to the overall F ratio, the experimenter will achieve greater

power by using the FMSRB.

Two questions of generalizability are of concern with the present findings. The first concerns

whether similar results would hold had a different set of orthogonal contrasts been explored. Power

differences between contrasts are a function of the magnitude of the treatment effect and the standard

error. To standardize the treatmen effect the current study imposed treatment effects in multiples of

the appropriate standard error. Thus, the differences due to the number of groups involved in the

contrast were eliminated since these differences would be reflected in the size of the standard errors.

The second concern is the generalizability of the findings to more than four treatment

conciijons. The differences between the two strategies are almost exclusively reflected in the

evaluation of the contrast with the largest treatment effect. The critical value for this contrast will

differ for the two strategies with the t-value required by FMSRB smaller than by MSRB regardless

of the number of treatment groups involved. Likewise, regardless of the number of treatment groups

involved the probability that the overall null hypothesis will at rejected will increase when several

contrasts contribute systematic variance rather than just a single contrast. Thus, the same

conclusions would be reached concerning the relative power of the two strategies regdless, ,ne

number of groups. These conclusions are that when few contrasts contribute systematic variance the

omnibus F test would result in a number cf incorrectly retained null hypotheses. This would more

than counter any reduction in the t value for the largest contrast, and hence would result in more

power with the MSRB. However, when several contrasts contribute systematic variance the

complete null hypothesis is likely to be rejected and increased power will be achieved by the FMSRB

due to the lower critical value for the contrast with the largest treatment effect.

Would an experimenter know enough about the treatment effects to capitalize on the differential

power of the two strategies? While this information may not always be available, it is similar to that

needed to conduct any power analysis to decide on an appropriate sample size. Where the

experimenter is uncertain, a careful review of the literature may provide the required information.
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Table 1

Power and experimentwice Type I error rate when one contr-st null hypothesis is true and one is

false.

Observed Power Type I error

Treatment Effect FMSRB MSRB FMSRB MSRB

Small (S) .102 .106 .033 .028

Medium (M) .364 .386 .041 .035

Large (L) .731 .749 .050 .045
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Table 2

Power when both contrast null hypotheses are false.

Contrast

Effect

Observed Power

Contrast 1 Contrast 2 Any Contrast Both Contrasts

1 2 FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSRB MSRB

S S .117 .112 .112 .106 .199 .191 .030 .028

M S .400 .393 .147 .127 .458 .438 .089 .082

L S .758 .761 .159 .149 .778 .776 .138 .134

M M .465 .432 .458 .424 .665 .612 .258 .244

L M .803 .774 .480 .457 .870 .828 .414 .403

L L .833 .814 .827 .808 .956 .927 .703 .695
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Table 3

Power an x I error rate when one contrast null hypothesis is false and two are

true.

Observed Power Type I Error

Treatment Effect of False I-10 FMSRB MSRB FMSRB MSRB

SmaK M .063 .073 .032 .031

rvlecliu,n (M) .234 .326 .039 .037

Large (L) .649 .705 .046 .044
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Table 4

Power and experimentwisc Type I error rate when two contrast null hypotheses are fale and one is

Observed Power

Effects Contrast 1 Contrast 2 Any Contrast All Contrasts Type I error

FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSRB MSRB FMSR13 MSRB

SSa .076 .080 .069 .072 .135 .144 .010 .009 .018 .018

MS .305 .326 .088 .084 .350 .368 .042 .042 .026 .023

MM .352 .340 .352 .343 .550 .532 .154 .150 .028 .026

LS ,662 .697 .100 .096 .681 .713 .081 .080 .025 .024

LM .716 .712 .378 .365 .798 .785 .296 .292 .033 .032

LL .746 .735 .741 .731 .919 .900 .568 .566 .037 .036

a These symbols refer to the relative magnitude of the treatment effects contained in the first and

second contrasts, respectively.
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Table 5

Power when all three contrast null hypotheses are false.

Effects

Observed Power

Qne or more contracts Two or more contrasts All three contrasts

FMSRB MSRB FMSRB MSRB FMSRB MSRB

SSSa .199 .200 .029 .028 .003 .003

MSS .421 .412 .080 .078 .012 .012

MMS .587 .556 .195 .191 .040 .039

MMM .699 .649 .320 .315 .116 .114

LSS .726 .730 .143 .140 .019 .019

LMS .810 .789 .348 .344 .064 .064

LMM .861 .827 .486 .482 .193 .192

LLS .918 .897 .605 .601 .112 .111

LLM .929 .966 .686 .682 .321 .319

LLL .956 .942 .830 .827 .564 .563

a These symbols refer to the relative magnitude of the treatment effects contained in the first,

second, and third contrasts, respectively.
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Figure 1

Decision structures for the MSRB and the FMSRB.

For a complete set of k-1 orthogonal contrasts on k groups means, with test statistics ranked in descending
the decision structure for both procedures is presented below. No that in both procedures, advancing to
the next tage of testing is contingent upon rejection of all previous null hypotheses.

M SIM FM SIM

1. Test contrast with largest test statistic at
c4k-1) significance level.

2. Test contrast with next largest test !'atistic at

°c4k..2) significance level.

3. Test contrast with next largest test statistic at
°c4k..3) significance level.

K-2. Test contrast with smallest test statistic at

cc4k-(k-1)1 (i.e. a.) significance level.

1. Test complete null hypothesis at
a, significance level.

2. Test contrast with largest test statistic at
/(k-2) significance level.

3. Test contrast with next largest test statistic at
c(4k-2) significance level.

4. Test contrast with next largest test statistic at
a.44_3) significance level.

K-1. Test contrast with smallest test statistic at
c(41-(k_i)] (i.e. a.) sit,aificance level.
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